Continuous Functions on Compact Totally Ordered Spaces
نویسندگان
چکیده
منابع مشابه
Characterizing Continuous Functions on Compact Spaces
We consider the following problem: given a set X and a function T : X → X, does there exist a compact Hausdorff topology on X which makes T continuous? We characterize such functions in terms of their orbit structure. Given the generality of the problem, the characterization turns out to be surprisingly simple and elegant. Amongst other results, we also characterize homeomorphisms on compact me...
متن کاملConcerning Continuous Images of Compact Ordered Spaces
It is the purpose of this paper to prove that if each of X and Y is a compact Hausdorff space containing infinitely many points, and X X Y is the continuous image of a compact ordered space L, then both X and Fare metrizable.2 The preceding theorem is a generalization of a theorem [l ] by Mardesic and Papic, who assume that X, Y, and L are also connected. Young, in [3], shows that the Cartesian...
متن کاملOn Zero-dimensional Continuous Images of Compact Ordered Spaces
Throughout this paper X denotes a compact and zero-dimensional Hausdorr space. We shall be concerned with Theorem 0.1 The following assertions are equivalent. (A) X is the continuous image of a compact ordered space. (B) X is the continuous image of a zero-dimensional compact ordered space. (C) X has a T 0-separating cross-free family of clopen sets. (D) X has a T 0-separating non-Archimedian f...
متن کاملUniform Continuity of Continuous Functions on Compact Metric Spaces
A basic theorem asserts that a continuous function on a compact metric space with values in another metric space is uniformly continuous. The usual proofs based on a contradiction argument involving sequences or on the covering property of compact sets are quite sophisticated for students taking a first course on real analysis. We present a direct proof only using results that are established a...
متن کاملContinuous Functions on Products of Compact Hausdorff Spaces
In the original version of the present paper submitted in 1995, we stated: "As far as we know it may be possible to prove that, if H and K are two compact Hausdorff spaces and (C(H), pointwise) and (C(K), pointwise) are both a-fragmented, then (C(HxK), pointwise) is also a-fragmented. If this is so, then the condition that for each finite subset O of F the space C(U {Kv: (pe}, pointwise) is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1995
ISSN: 0022-1236
DOI: 10.1006/jfan.1995.1145